MakeItFrom.com
Menu (ESC)

EN 2.4878 Nickel vs. A535.0 Aluminum

EN 2.4878 nickel belongs to the nickel alloys classification, while A535.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4878 nickel and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 13 to 17
9.0
Fatigue Strength, MPa 400 to 410
95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
25
Tensile Strength: Ultimate (UTS), MPa 1210 to 1250
250
Tensile Strength: Yield (Proof), MPa 740 to 780
120

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 1030
170
Melting Completion (Liquidus), °C 1370
620
Melting Onset (Solidus), °C 1320
550
Specific Heat Capacity, J/kg-K 460
910
Thermal Conductivity, W/m-K 11
100
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.3
2.6
Embodied Carbon, kg CO2/kg material 10
9.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 370
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 180
19
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 1540
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 41 to 42
26
Strength to Weight: Bending, points 31
33
Thermal Diffusivity, mm2/s 2.8
42
Thermal Shock Resistance, points 37 to 39
11

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
91.4 to 93.4
Boron (B), % 0.010 to 0.015
0
Carbon (C), % 0.030 to 0.070
0
Chromium (Cr), % 23 to 25
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 0.2
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 0.5
0.1 to 0.25
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 43.6 to 52.2
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.0070
0
Tantalum (Ta), % 0 to 0.050
0
Titanium (Ti), % 2.8 to 3.2
0 to 0.25
Zirconium (Zr), % 0.030 to 0.070
0
Residuals, % 0
0 to 0.15