MakeItFrom.com
Menu (ESC)

EN 2.4878 Nickel vs. AISI 310S Stainless Steel

EN 2.4878 nickel belongs to the nickel alloys classification, while AISI 310S stainless steel belongs to the iron alloys. They have 46% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4878 nickel and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 13 to 17
34 to 44
Fatigue Strength, MPa 400 to 410
250 to 280
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 78
79
Shear Strength, MPa 750 to 760
420 to 470
Tensile Strength: Ultimate (UTS), MPa 1210 to 1250
600 to 710
Tensile Strength: Yield (Proof), MPa 740 to 780
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 1030
1100
Melting Completion (Liquidus), °C 1370
1450
Melting Onset (Solidus), °C 1320
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 11
16
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 80
25
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 10
4.3
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 370
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 180
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 1540
190 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 41 to 42
21 to 25
Strength to Weight: Bending, points 31
20 to 22
Thermal Diffusivity, mm2/s 2.8
4.1
Thermal Shock Resistance, points 37 to 39
14 to 16

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
0
Boron (B), % 0.010 to 0.015
0
Carbon (C), % 0.030 to 0.070
0 to 0.080
Chromium (Cr), % 23 to 25
24 to 26
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.0
48.3 to 57
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 43.6 to 52.2
19 to 22
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.5
Sulfur (S), % 0 to 0.0070
0 to 0.030
Tantalum (Ta), % 0 to 0.050
0
Titanium (Ti), % 2.8 to 3.2
0
Zirconium (Zr), % 0.030 to 0.070
0

Comparable Variants