MakeItFrom.com
Menu (ESC)

EN 2.4878 Nickel vs. EN AC-43500 Aluminum

EN 2.4878 nickel belongs to the nickel alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4878 nickel and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 13 to 17
4.5 to 13
Fatigue Strength, MPa 400 to 410
62 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 1210 to 1250
220 to 300
Tensile Strength: Yield (Proof), MPa 740 to 780
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 330
550
Maximum Temperature: Mechanical, °C 1030
170
Melting Completion (Liquidus), °C 1370
600
Melting Onset (Solidus), °C 1320
590
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.3
2.6
Embodied Carbon, kg CO2/kg material 10
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 370
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 180
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 1540
130 to 200
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 41 to 42
24 to 33
Strength to Weight: Bending, points 31
32 to 39
Thermal Diffusivity, mm2/s 2.8
60
Thermal Shock Resistance, points 37 to 39
10 to 14

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
86.4 to 90.5
Boron (B), % 0.010 to 0.015
0
Carbon (C), % 0.030 to 0.070
0
Chromium (Cr), % 23 to 25
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 0 to 1.0
0 to 0.25
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 0 to 0.5
0.4 to 0.8
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 43.6 to 52.2
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
9.0 to 11.5
Sulfur (S), % 0 to 0.0070
0
Tantalum (Ta), % 0 to 0.050
0
Titanium (Ti), % 2.8 to 3.2
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Zirconium (Zr), % 0.030 to 0.070
0
Residuals, % 0
0 to 0.15

Comparable Variants