MakeItFrom.com
Menu (ESC)

EN 2.4878 Nickel vs. C86700 Bronze

EN 2.4878 nickel belongs to the nickel alloys classification, while C86700 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4878 nickel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 13 to 17
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 1210 to 1250
630
Tensile Strength: Yield (Proof), MPa 740 to 780
250

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 1030
130
Melting Completion (Liquidus), °C 1370
880
Melting Onset (Solidus), °C 1320
860
Specific Heat Capacity, J/kg-K 460
400
Thermal Conductivity, W/m-K 11
89
Thermal Expansion, µm/m-K 12
20

Otherwise Unclassified Properties

Base Metal Price, % relative 80
23
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 10
2.9
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 370
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 180
86
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 1540
290
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 41 to 42
22
Strength to Weight: Bending, points 31
21
Thermal Diffusivity, mm2/s 2.8
28
Thermal Shock Resistance, points 37 to 39
21

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
1.0 to 3.0
Boron (B), % 0.010 to 0.015
0
Carbon (C), % 0.030 to 0.070
0
Chromium (Cr), % 23 to 25
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
55 to 60
Iron (Fe), % 0 to 1.0
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 0.5
1.0 to 3.5
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 43.6 to 52.2
0 to 1.0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0070
0
Tantalum (Ta), % 0 to 0.050
0
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 2.8 to 3.2
0
Zinc (Zn), % 0
30 to 38
Zirconium (Zr), % 0.030 to 0.070
0
Residuals, % 0
0 to 1.0