MakeItFrom.com
Menu (ESC)

EN 2.4879 Cast Nickel vs. 6061 Aluminum

EN 2.4879 cast nickel belongs to the nickel alloys classification, while 6061 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4879 cast nickel and the bottom bar is 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 3.4
3.4 to 20
Fatigue Strength, MPa 110
58 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 490
130 to 410
Tensile Strength: Yield (Proof), MPa 270
76 to 370

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1400
580
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
170
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
3.8 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 180
42 to 1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 16
13 to 42
Strength to Weight: Bending, points 16
21 to 45
Thermal Diffusivity, mm2/s 2.8
68
Thermal Shock Resistance, points 13
5.7 to 18

Alloy Composition

Aluminum (Al), % 0
95.9 to 98.6
Carbon (C), % 0.35 to 0.55
0
Chromium (Cr), % 27 to 30
0.040 to 0.35
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 9.4 to 20.7
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.5
0 to 0.15
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 47 to 50
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.0
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 4.0 to 6.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15