MakeItFrom.com
Menu (ESC)

EN 2.4879 Cast Nickel vs. 6070 Aluminum

EN 2.4879 cast nickel belongs to the nickel alloys classification, while 6070 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4879 cast nickel and the bottom bar is 6070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 3.4
5.6 to 8.6
Fatigue Strength, MPa 110
95 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 490
370 to 380
Tensile Strength: Yield (Proof), MPa 270
350

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 1150
160
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
160
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
20 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 180
880 to 900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 16
38
Strength to Weight: Bending, points 16
42 to 43
Thermal Diffusivity, mm2/s 2.8
65
Thermal Shock Resistance, points 13
16 to 17

Alloy Composition

Aluminum (Al), % 0
94.6 to 98
Carbon (C), % 0.35 to 0.55
0
Chromium (Cr), % 27 to 30
0 to 0.1
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 9.4 to 20.7
0 to 0.5
Magnesium (Mg), % 0
0.5 to 1.2
Manganese (Mn), % 0 to 1.5
0.4 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 47 to 50
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.0
1.0 to 1.7
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 4.0 to 6.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15