MakeItFrom.com
Menu (ESC)

EN 2.4879 Cast Nickel vs. C64200 Bronze

EN 2.4879 cast nickel belongs to the nickel alloys classification, while C64200 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4879 cast nickel and the bottom bar is C64200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 3.4
14 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 490
540 to 640
Tensile Strength: Yield (Proof), MPa 270
230 to 320

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1150
210
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1400
980
Specific Heat Capacity, J/kg-K 460
430
Thermal Conductivity, W/m-K 11
45
Thermal Expansion, µm/m-K 13
18

Otherwise Unclassified Properties

Base Metal Price, % relative 55
29
Density, g/cm3 8.5
8.3
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 120
50
Embodied Water, L/kg 270
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
73 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 180
240 to 470
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 16
18 to 21
Strength to Weight: Bending, points 16
18 to 20
Thermal Diffusivity, mm2/s 2.8
13
Thermal Shock Resistance, points 13
20 to 23

Alloy Composition

Aluminum (Al), % 0
6.3 to 7.6
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0.35 to 0.55
0
Chromium (Cr), % 27 to 30
0
Copper (Cu), % 0
88.2 to 92.2
Iron (Fe), % 9.4 to 20.7
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 47 to 50
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.0
1.5 to 2.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Tungsten (W), % 4.0 to 6.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5