MakeItFrom.com
Menu (ESC)

EN 2.4889 Nickel vs. 380.0 Aluminum

EN 2.4889 nickel belongs to the nickel alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4889 nickel and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
80
Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 39
3.0
Fatigue Strength, MPa 210
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Shear Strength, MPa 490
190
Tensile Strength: Ultimate (UTS), MPa 720
320
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 350
510
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1350
590
Melting Onset (Solidus), °C 1300
540
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 13
100
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
27
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
83

Otherwise Unclassified Properties

Base Metal Price, % relative 42
10
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 6.9
7.5
Embodied Energy, MJ/kg 98
140
Embodied Water, L/kg 250
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 180
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 25
31
Strength to Weight: Bending, points 22
36
Thermal Diffusivity, mm2/s 3.4
40
Thermal Shock Resistance, points 19
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
3.0 to 4.0
Iron (Fe), % 21 to 25
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 45 to 50.4
0 to 0.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
7.5 to 9.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5