MakeItFrom.com
Menu (ESC)

EN 2.4889 Nickel vs. 390.0 Aluminum

EN 2.4889 nickel belongs to the nickel alloys classification, while 390.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4889 nickel and the bottom bar is 390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
120
Elastic (Young's, Tensile) Modulus, GPa 200
75
Elongation at Break, % 39
1.0
Fatigue Strength, MPa 210
76 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 720
280 to 300
Tensile Strength: Yield (Proof), MPa 270
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 350
640
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1350
650
Melting Onset (Solidus), °C 1300
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
24 to 25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
79 to 83

Otherwise Unclassified Properties

Base Metal Price, % relative 42
11
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 6.9
7.3
Embodied Energy, MJ/kg 98
130
Embodied Water, L/kg 250
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.7 to 2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 180
380 to 470
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 25
28 to 30
Strength to Weight: Bending, points 22
35 to 36
Thermal Diffusivity, mm2/s 3.4
56
Thermal Shock Resistance, points 19
14 to 15

Alloy Composition

Aluminum (Al), % 0
74.5 to 79.6
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
4.0 to 5.0
Iron (Fe), % 21 to 25
0 to 1.3
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
16 to 18
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.2