MakeItFrom.com
Menu (ESC)

EN 2.4889 Nickel vs. 5010 Aluminum

EN 2.4889 nickel belongs to the nickel alloys classification, while 5010 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4889 nickel and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 39
1.1 to 23
Fatigue Strength, MPa 210
35 to 83
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 490
64 to 120
Tensile Strength: Ultimate (UTS), MPa 720
100 to 210
Tensile Strength: Yield (Proof), MPa 270
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 1200
180
Melting Completion (Liquidus), °C 1350
650
Melting Onset (Solidus), °C 1300
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 13
200
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
150

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 6.9
8.2
Embodied Energy, MJ/kg 98
150
Embodied Water, L/kg 250
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 180
10 to 270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 25
10 to 22
Strength to Weight: Bending, points 22
18 to 29
Thermal Diffusivity, mm2/s 3.4
82
Thermal Shock Resistance, points 19
4.5 to 9.4

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.7
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0 to 0.15
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 21 to 25
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.0
0.1 to 0.3
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15