MakeItFrom.com
Menu (ESC)

EN 2.4889 Nickel vs. C27200 Brass

EN 2.4889 nickel belongs to the nickel alloys classification, while C27200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4889 nickel and the bottom bar is C27200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
10 to 50
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 490
230 to 320
Tensile Strength: Ultimate (UTS), MPa 720
370 to 590
Tensile Strength: Yield (Proof), MPa 270
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 350
170
Maximum Temperature: Mechanical, °C 1200
130
Melting Completion (Liquidus), °C 1350
920
Melting Onset (Solidus), °C 1300
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
31

Otherwise Unclassified Properties

Base Metal Price, % relative 42
24
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 6.9
2.7
Embodied Energy, MJ/kg 98
45
Embodied Water, L/kg 250
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
30 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110 to 810
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25
13 to 20
Strength to Weight: Bending, points 22
14 to 19
Thermal Diffusivity, mm2/s 3.4
37
Thermal Shock Resistance, points 19
12 to 20

Alloy Composition

Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
62 to 65
Iron (Fe), % 21 to 25
0 to 0.070
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
0
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
34.6 to 38
Residuals, % 0
0 to 0.3