MakeItFrom.com
Menu (ESC)

EN 2.4889 Nickel vs. C42200 Brass

EN 2.4889 nickel belongs to the nickel alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4889 nickel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
2.0 to 46
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 490
210 to 350
Tensile Strength: Ultimate (UTS), MPa 720
300 to 610
Tensile Strength: Yield (Proof), MPa 270
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 350
200
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1350
1040
Melting Onset (Solidus), °C 1300
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
32

Otherwise Unclassified Properties

Base Metal Price, % relative 42
29
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 6.9
2.7
Embodied Energy, MJ/kg 98
44
Embodied Water, L/kg 250
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
49 to 1460
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25
9.5 to 19
Strength to Weight: Bending, points 22
11 to 18
Thermal Diffusivity, mm2/s 3.4
39
Thermal Shock Resistance, points 19
10 to 21

Alloy Composition

Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
86 to 89
Iron (Fe), % 21 to 25
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0 to 0.35
Silicon (Si), % 2.5 to 3.0
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.8 to 1.4
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5