MakeItFrom.com
Menu (ESC)

EN 2.4889 Nickel vs. C94700 Bronze

EN 2.4889 nickel belongs to the nickel alloys classification, while C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4889 nickel and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
7.9 to 32
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 720
350 to 590
Tensile Strength: Yield (Proof), MPa 270
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 350
200
Maximum Temperature: Mechanical, °C 1200
190
Melting Completion (Liquidus), °C 1350
1030
Melting Onset (Solidus), °C 1300
900
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 13
54
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 42
34
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 6.9
3.5
Embodied Energy, MJ/kg 98
56
Embodied Water, L/kg 250
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110 to 700
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25
11 to 19
Strength to Weight: Bending, points 22
13 to 18
Thermal Diffusivity, mm2/s 3.4
16
Thermal Shock Resistance, points 19
12 to 21

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
85 to 90
Iron (Fe), % 21 to 25
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 45 to 50.4
4.5 to 6.0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 2.5 to 3.0
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3