MakeItFrom.com
Menu (ESC)

EN 2.4889 Nickel vs. C96300 Copper-nickel

EN 2.4889 nickel belongs to the nickel alloys classification, while C96300 copper-nickel belongs to the copper alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4889 nickel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
150
Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 39
11
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
49
Tensile Strength: Ultimate (UTS), MPa 720
580
Tensile Strength: Yield (Proof), MPa 270
430

Thermal Properties

Latent Heat of Fusion, J/g 350
230
Maximum Temperature: Mechanical, °C 1200
240
Melting Completion (Liquidus), °C 1350
1200
Melting Onset (Solidus), °C 1300
1150
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 13
37
Thermal Expansion, µm/m-K 14
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 42
42
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 6.9
5.1
Embodied Energy, MJ/kg 98
76
Embodied Water, L/kg 250
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
59
Resilience: Unit (Modulus of Resilience), kJ/m3 180
720
Stiffness to Weight: Axial, points 14
8.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 3.4
10
Thermal Shock Resistance, points 19
20

Alloy Composition

Carbon (C), % 0.050 to 0.12
0 to 0.15
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
72.3 to 80.8
Iron (Fe), % 21 to 25
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0.25 to 1.5
Nickel (Ni), % 45 to 50.4
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 2.5 to 3.0
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.020
Residuals, % 0
0 to 0.5