MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. 1070 Aluminum

EN 2.4951 nickel belongs to the nickel alloys classification, while 1070 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is 1070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 34
4.5 to 39
Fatigue Strength, MPa 200
22 to 49
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 500
48 to 79
Tensile Strength: Ultimate (UTS), MPa 750
73 to 140
Tensile Strength: Yield (Proof), MPa 270
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
640
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
230
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
61
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
200

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.3
8.3
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 280
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
4.8 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 190
2.1 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 25
7.5 to 14
Strength to Weight: Bending, points 22
14 to 22
Thermal Diffusivity, mm2/s 3.1
94
Thermal Shock Resistance, points 23
3.3 to 6.1

Alloy Composition

Aluminum (Al), % 0 to 0.3
99.7 to 100
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
0 to 0.040
Iron (Fe), % 0 to 5.0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0 to 0.030
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.6
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.040
Residuals, % 0
0 to 0.030