MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. 5657 Aluminum

EN 2.4951 nickel belongs to the nickel alloys classification, while 5657 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
40 to 50
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 34
6.6 to 15
Fatigue Strength, MPa 200
74 to 88
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 500
92 to 110
Tensile Strength: Ultimate (UTS), MPa 750
150 to 200
Tensile Strength: Yield (Proof), MPa 270
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1150
180
Melting Completion (Liquidus), °C 1360
660
Melting Onset (Solidus), °C 1310
640
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
210
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
54
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
180

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.3
8.4
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 280
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 190
140 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 25
15 to 20
Strength to Weight: Bending, points 22
23 to 28
Thermal Diffusivity, mm2/s 3.1
84
Thermal Shock Resistance, points 23
6.7 to 8.6

Alloy Composition

Aluminum (Al), % 0 to 0.3
98.5 to 99.4
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 5.0
0 to 0.1
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.030
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.080
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.6
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.050