MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. 6101A Aluminum

EN 2.4951 nickel belongs to the nickel alloys classification, while 6101A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is 6101A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 34
11
Fatigue Strength, MPa 200
80
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 500
130
Tensile Strength: Ultimate (UTS), MPa 750
220
Tensile Strength: Yield (Proof), MPa 270
190

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1150
160
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
630
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
200
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
55
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
180

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.3
8.3
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 280
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
24
Resilience: Unit (Modulus of Resilience), kJ/m3 190
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 25
23
Strength to Weight: Bending, points 22
30
Thermal Diffusivity, mm2/s 3.1
84
Thermal Shock Resistance, points 23
10

Alloy Composition

Aluminum (Al), % 0 to 0.3
97.9 to 99.3
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 0 to 5.0
0 to 0.4
Magnesium (Mg), % 0
0.4 to 0.9
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.3 to 0.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.6
0
Residuals, % 0
0 to 0.1