MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. 7049A Aluminum

EN 2.4951 nickel belongs to the nickel alloys classification, while 7049A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
5.0 to 5.7
Fatigue Strength, MPa 200
180
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 76
27
Shear Strength, MPa 500
340 to 350
Tensile Strength: Ultimate (UTS), MPa 750
580 to 590
Tensile Strength: Yield (Proof), MPa 270
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 320
370
Maximum Temperature: Mechanical, °C 1150
200
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
430
Specific Heat Capacity, J/kg-K 460
850
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.5
3.1
Embodied Carbon, kg CO2/kg material 9.3
8.2
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 280
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1800 to 1990
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 25
52 to 53
Strength to Weight: Bending, points 22
50 to 51
Thermal Diffusivity, mm2/s 3.1
50
Thermal Shock Resistance, points 23
25

Alloy Composition

Aluminum (Al), % 0 to 0.3
84.6 to 89.5
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0.050 to 0.25
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
1.2 to 1.9
Iron (Fe), % 0 to 5.0
0 to 0.5
Magnesium (Mg), % 0
2.1 to 3.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.6
0 to 0.25
Zinc (Zn), % 0
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15