MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. 705.0 Aluminum

EN 2.4951 nickel belongs to the nickel alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
62 to 65
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 34
8.4 to 10
Fatigue Strength, MPa 200
63 to 98
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 750
240 to 260
Tensile Strength: Yield (Proof), MPa 270
130

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1150
180
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
610
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
110

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.3
8.4
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 280
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 190
120 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 25
24 to 26
Strength to Weight: Bending, points 22
31 to 32
Thermal Diffusivity, mm2/s 3.1
55
Thermal Shock Resistance, points 23
11

Alloy Composition

Aluminum (Al), % 0 to 0.3
92.3 to 98.6
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0 to 0.4
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 0 to 5.0
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.6
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.6
0 to 0.25
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15