MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. AISI 304L Stainless Steel

EN 2.4951 nickel belongs to the nickel alloys classification, while AISI 304L stainless steel belongs to the iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is AISI 304L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160 to 350
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
6.7 to 46
Fatigue Strength, MPa 200
170 to 430
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 500
370 to 680
Tensile Strength: Ultimate (UTS), MPa 750
540 to 1160
Tensile Strength: Yield (Proof), MPa 270
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 1150
540
Melting Completion (Liquidus), °C 1360
1450
Melting Onset (Solidus), °C 1310
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 60
16
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 9.3
3.1
Embodied Energy, MJ/kg 130
44
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
71 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 190
92 to 1900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 25
19 to 41
Strength to Weight: Bending, points 22
19 to 31
Thermal Diffusivity, mm2/s 3.1
4.2
Thermal Shock Resistance, points 23
12 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.080 to 0.15
0 to 0.030
Chromium (Cr), % 18 to 21
18 to 20
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 5.0
65 to 74
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 65.4 to 81.7
8.0 to 12
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.2 to 0.6
0