MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. AISI 317 Stainless Steel

EN 2.4951 nickel belongs to the nickel alloys classification, while AISI 317 stainless steel belongs to the iron alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is AISI 317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
170 to 220
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
35 to 55
Fatigue Strength, MPa 200
250 to 330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 76
79
Shear Strength, MPa 500
420 to 470
Tensile Strength: Ultimate (UTS), MPa 750
580 to 710
Tensile Strength: Yield (Proof), MPa 270
250 to 420

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 1150
590
Melting Completion (Liquidus), °C 1360
1400
Melting Onset (Solidus), °C 1310
1380
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 60
21
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 9.3
4.3
Embodied Energy, MJ/kg 130
59
Embodied Water, L/kg 280
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
210 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 190
150 to 430
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 25
20 to 25
Strength to Weight: Bending, points 22
20 to 22
Thermal Diffusivity, mm2/s 3.1
4.1
Thermal Shock Resistance, points 23
12 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.080 to 0.15
0 to 0.080
Chromium (Cr), % 18 to 21
18 to 20
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 5.0
58 to 68
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 65.4 to 81.7
11 to 15
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.2 to 0.6
0