MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. EN AC-21200 Aluminum

EN 2.4951 nickel belongs to the nickel alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
3.9 to 6.2
Fatigue Strength, MPa 200
110 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 750
410 to 440
Tensile Strength: Yield (Proof), MPa 270
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1360
660
Melting Onset (Solidus), °C 1310
550
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
100

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 9.3
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 280
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 190
500 to 930
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 25
38 to 40
Strength to Weight: Bending, points 22
41 to 43
Thermal Diffusivity, mm2/s 3.1
49
Thermal Shock Resistance, points 23
18 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.3
93.3 to 95.7
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
4.0 to 5.0
Iron (Fe), % 0 to 5.0
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Nickel (Ni), % 65.4 to 81.7
0 to 0.050
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0.2 to 0.6
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1