MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. EN AC-43000 Aluminum

EN 2.4951 nickel belongs to the nickel alloys classification, while EN AC-43000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is EN AC-43000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
60 to 94
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
1.1 to 2.5
Fatigue Strength, MPa 200
68 to 76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 750
180 to 270
Tensile Strength: Yield (Proof), MPa 270
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
540
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1360
600
Melting Onset (Solidus), °C 1310
590
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
130

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 9.3
7.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 280
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 190
66 to 360
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 25
20 to 29
Strength to Weight: Bending, points 22
28 to 36
Thermal Diffusivity, mm2/s 3.1
60
Thermal Shock Resistance, points 23
8.6 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.3
87 to 90.8
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 0 to 5.0
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.45
Nickel (Ni), % 65.4 to 81.7
0 to 0.050
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
9.0 to 11
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.2 to 0.6
0 to 0.15
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15