MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. EN AC-51500 Aluminum

EN 2.4951 nickel belongs to the nickel alloys classification, while EN AC-51500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
80
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 34
5.6
Fatigue Strength, MPa 200
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 750
280
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 320
430
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1360
630
Melting Onset (Solidus), °C 1310
590
Specific Heat Capacity, J/kg-K 460
910
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
88

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 9.3
9.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 280
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
13
Resilience: Unit (Modulus of Resilience), kJ/m3 190
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
52
Strength to Weight: Axial, points 25
29
Strength to Weight: Bending, points 22
36
Thermal Diffusivity, mm2/s 3.1
49
Thermal Shock Resistance, points 23
13

Alloy Composition

Aluminum (Al), % 0 to 0.3
89.8 to 93.1
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 0 to 5.0
0 to 0.25
Magnesium (Mg), % 0
4.7 to 6.0
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
1.8 to 2.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.6
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15