MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. C41500 Brass

EN 2.4951 nickel belongs to the nickel alloys classification, while C41500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 34
2.0 to 42
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 500
220 to 360
Tensile Strength: Ultimate (UTS), MPa 750
340 to 560
Tensile Strength: Yield (Proof), MPa 270
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 1150
180
Melting Completion (Liquidus), °C 1360
1030
Melting Onset (Solidus), °C 1310
1010
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 9.3
2.8
Embodied Energy, MJ/kg 130
45
Embodied Water, L/kg 280
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
160 to 1340
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 25
11 to 18
Strength to Weight: Bending, points 22
12 to 17
Thermal Diffusivity, mm2/s 3.1
37
Thermal Shock Resistance, points 23
12 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
89 to 93
Iron (Fe), % 0 to 5.0
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 2.2
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5