MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. C42500 Brass

EN 2.4951 nickel belongs to the nickel alloys classification, while C42500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 34
2.0 to 49
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 500
220 to 360
Tensile Strength: Ultimate (UTS), MPa 750
310 to 630
Tensile Strength: Yield (Proof), MPa 270
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 1150
180
Melting Completion (Liquidus), °C 1360
1030
Melting Onset (Solidus), °C 1310
1010
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 9.3
2.8
Embodied Energy, MJ/kg 130
46
Embodied Water, L/kg 280
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 190
64 to 1570
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 25
9.9 to 20
Strength to Weight: Bending, points 22
12 to 19
Thermal Diffusivity, mm2/s 3.1
36
Thermal Shock Resistance, points 23
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
87 to 90
Iron (Fe), % 0 to 5.0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 3.0
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0
0 to 0.5