MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. C43400 Brass

EN 2.4951 nickel belongs to the nickel alloys classification, while C43400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is C43400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 34
3.0 to 49
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 500
250 to 390
Tensile Strength: Ultimate (UTS), MPa 750
310 to 690
Tensile Strength: Yield (Proof), MPa 270
110 to 560

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1360
1020
Melting Onset (Solidus), °C 1310
990
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
32

Otherwise Unclassified Properties

Base Metal Price, % relative 60
28
Density, g/cm3 8.5
8.6
Embodied Carbon, kg CO2/kg material 9.3
2.7
Embodied Energy, MJ/kg 130
44
Embodied Water, L/kg 280
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
57 to 1420
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
10 to 22
Strength to Weight: Bending, points 22
12 to 20
Thermal Diffusivity, mm2/s 3.1
41
Thermal Shock Resistance, points 23
11 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
84 to 87
Iron (Fe), % 0 to 5.0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
11.4 to 15.6
Residuals, % 0
0 to 0.5