MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. C84800 Brass

EN 2.4951 nickel belongs to the nickel alloys classification, while C84800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is C84800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 34
18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 750
230
Tensile Strength: Yield (Proof), MPa 270
100

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 1150
150
Melting Completion (Liquidus), °C 1360
950
Melting Onset (Solidus), °C 1310
830
Specific Heat Capacity, J/kg-K 460
370
Thermal Conductivity, W/m-K 12
72
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
27
Density, g/cm3 8.5
8.6
Embodied Carbon, kg CO2/kg material 9.3
2.8
Embodied Energy, MJ/kg 130
46
Embodied Water, L/kg 280
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
34
Resilience: Unit (Modulus of Resilience), kJ/m3 190
53
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 25
7.3
Strength to Weight: Bending, points 22
9.6
Thermal Diffusivity, mm2/s 3.1
23
Thermal Shock Resistance, points 23
8.2

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
75 to 77
Iron (Fe), % 0 to 5.0
0 to 0.4
Lead (Pb), % 0
5.5 to 7.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65.4 to 81.7
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
13 to 17
Residuals, % 0
0 to 0.7