MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. C87400 Brass

EN 2.4951 nickel belongs to the nickel alloys classification, while C87400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is C87400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 34
21
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 750
390
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1360
920
Melting Onset (Solidus), °C 1310
820
Specific Heat Capacity, J/kg-K 460
400
Thermal Conductivity, W/m-K 12
28
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 60
27
Density, g/cm3 8.5
8.3
Embodied Carbon, kg CO2/kg material 9.3
2.7
Embodied Energy, MJ/kg 130
44
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
65
Resilience: Unit (Modulus of Resilience), kJ/m3 190
120
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
13
Strength to Weight: Bending, points 22
14
Thermal Diffusivity, mm2/s 3.1
8.3
Thermal Shock Resistance, points 23
14

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 0.8
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
79 to 85.5
Iron (Fe), % 0 to 5.0
0
Lead (Pb), % 0
0 to 1.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
2.5 to 4.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.8