MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. C96200 Copper-nickel

EN 2.4951 nickel belongs to the nickel alloys classification, while C96200 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 34
23
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 76
46
Tensile Strength: Ultimate (UTS), MPa 750
350
Tensile Strength: Yield (Proof), MPa 270
190

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1150
220
Melting Completion (Liquidus), °C 1360
1150
Melting Onset (Solidus), °C 1310
1100
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 12
45
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 60
36
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 9.3
3.8
Embodied Energy, MJ/kg 130
58
Embodied Water, L/kg 280
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
68
Resilience: Unit (Modulus of Resilience), kJ/m3 190
150
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
11
Strength to Weight: Bending, points 22
13
Thermal Diffusivity, mm2/s 3.1
13
Thermal Shock Resistance, points 23
12

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.080 to 0.15
0 to 0.1
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
83.6 to 90
Iron (Fe), % 0 to 5.0
1.0 to 1.8
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 65.4 to 81.7
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0.2 to 0.6
0
Residuals, % 0
0 to 0.5