MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. S35140 Stainless Steel

EN 2.4951 nickel belongs to the nickel alloys classification, while S35140 stainless steel belongs to the iron alloys. They have 49% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
210
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
34
Fatigue Strength, MPa 200
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 500
460
Tensile Strength: Ultimate (UTS), MPa 750
690
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Mechanical, °C 1150
1100
Melting Completion (Liquidus), °C 1360
1420
Melting Onset (Solidus), °C 1310
1370
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 12
14
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 9.3
5.5
Embodied Energy, MJ/kg 130
78
Embodied Water, L/kg 280
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
190
Resilience: Unit (Modulus of Resilience), kJ/m3 190
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 3.1
3.7
Thermal Shock Resistance, points 23
16

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.080 to 0.15
0 to 0.1
Chromium (Cr), % 18 to 21
20 to 22
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 5.0
44.1 to 52.7
Manganese (Mn), % 0 to 1.0
1.0 to 3.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 65.4 to 81.7
25 to 27
Niobium (Nb), % 0
0.25 to 0.75
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.2 to 0.6
0