MakeItFrom.com
Menu (ESC)

EN 2.4952 Nickel vs. 511.0 Aluminum

EN 2.4952 nickel belongs to the nickel alloys classification, while 511.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4952 nickel and the bottom bar is 511.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 17
3.0
Fatigue Strength, MPa 370
55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
25
Shear Strength, MPa 700
120
Tensile Strength: Ultimate (UTS), MPa 1150
150
Tensile Strength: Yield (Proof), MPa 670
83

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
36
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 9.8
8.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
3.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
51
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 38
15
Strength to Weight: Bending, points 29
23
Thermal Diffusivity, mm2/s 3.1
59
Thermal Shock Resistance, points 33
6.5

Alloy Composition

Aluminum (Al), % 1.0 to 1.8
93.3 to 96.2
Boron (B), % 0 to 0.0080
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.2
0 to 0.15
Iron (Fe), % 0 to 1.5
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0 to 0.35
Nickel (Ni), % 65 to 79.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.3 to 0.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15