MakeItFrom.com
Menu (ESC)

EN 2.4952 Nickel vs. Grade 20 Titanium

EN 2.4952 nickel belongs to the nickel alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 2.4952 nickel and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
5.7 to 17
Fatigue Strength, MPa 370
550 to 630
Poisson's Ratio 0.29
0.32
Reduction in Area, % 14
23
Shear Modulus, GPa 74
47
Shear Strength, MPa 700
560 to 740
Tensile Strength: Ultimate (UTS), MPa 1150
900 to 1270
Tensile Strength: Yield (Proof), MPa 670
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 980
370
Melting Completion (Liquidus), °C 1350
1660
Melting Onset (Solidus), °C 1300
1600
Specific Heat Capacity, J/kg-K 470
520
Thermal Expansion, µm/m-K 13
9.6

Otherwise Unclassified Properties

Density, g/cm3 8.3
5.0
Embodied Carbon, kg CO2/kg material 9.8
52
Embodied Energy, MJ/kg 140
860
Embodied Water, L/kg 290
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
2940 to 5760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
33
Strength to Weight: Axial, points 38
50 to 70
Strength to Weight: Bending, points 29
41 to 52
Thermal Shock Resistance, points 33
55 to 77

Alloy Composition

Aluminum (Al), % 1.0 to 1.8
3.0 to 4.0
Boron (B), % 0 to 0.0080
0
Carbon (C), % 0.040 to 0.1
0 to 0.050
Chromium (Cr), % 18 to 21
5.5 to 6.5
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 1.5
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 65 to 79.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4