MakeItFrom.com
Menu (ESC)

EN 2.4952 Nickel vs. Sintered 6061 Aluminum

EN 2.4952 nickel belongs to the nickel alloys classification, while sintered 6061 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4952 nickel and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 17
0.5 to 6.0
Fatigue Strength, MPa 370
32 to 62
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
25
Tensile Strength: Ultimate (UTS), MPa 1150
83 to 210
Tensile Strength: Yield (Proof), MPa 670
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
200
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
52
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
170

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 9.8
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
28 to 280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 38
8.6 to 21
Strength to Weight: Bending, points 29
16 to 29
Thermal Diffusivity, mm2/s 3.1
81
Thermal Shock Resistance, points 33
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 1.0 to 1.8
96 to 99.4
Boron (B), % 0 to 0.0080
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 1.5
0
Magnesium (Mg), % 0
0.4 to 1.2
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65 to 79.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0
Residuals, % 0
0 to 1.5