MakeItFrom.com
Menu (ESC)

EN 2.4952 Nickel vs. C71580 Copper-nickel

EN 2.4952 nickel belongs to the nickel alloys classification, while C71580 copper-nickel belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4952 nickel and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 17
40
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
51
Shear Strength, MPa 700
230
Tensile Strength: Ultimate (UTS), MPa 1150
330
Tensile Strength: Yield (Proof), MPa 670
110

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 980
260
Melting Completion (Liquidus), °C 1350
1180
Melting Onset (Solidus), °C 1300
1120
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 12
39
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 55
41
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 9.8
5.1
Embodied Energy, MJ/kg 140
74
Embodied Water, L/kg 290
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
47
Stiffness to Weight: Axial, points 13
8.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 38
10
Strength to Weight: Bending, points 29
12
Thermal Diffusivity, mm2/s 3.1
11
Thermal Shock Resistance, points 33
11

Alloy Composition

Aluminum (Al), % 1.0 to 1.8
0
Boron (B), % 0 to 0.0080
0
Carbon (C), % 0.040 to 0.1
0 to 0.070
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.2
65.5 to 71
Iron (Fe), % 0 to 1.5
0 to 0.5
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.3
Nickel (Ni), % 65 to 79.2
29 to 33
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.5