MakeItFrom.com
Menu (ESC)

EN AC-21000 Aluminum vs. AISI 201 Stainless Steel

EN AC-21000 aluminum belongs to the aluminum alloys classification, while AISI 201 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21000 aluminum and the bottom bar is AISI 201 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
200 to 440
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 6.7
4.6 to 51
Fatigue Strength, MPa 100
280 to 600
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 340
650 to 1450
Tensile Strength: Yield (Proof), MPa 240
300 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 670
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1150
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
61 to 340
Resilience: Unit (Modulus of Resilience), kJ/m3 390
230 to 2970
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 32
23 to 52
Strength to Weight: Bending, points 36
22 to 37
Thermal Diffusivity, mm2/s 49
4.0
Thermal Shock Resistance, points 15
14 to 32

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
67.5 to 75
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
5.5 to 7.5
Nickel (Ni), % 0 to 0.050
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0