MakeItFrom.com
Menu (ESC)

EN AC-21000 Aluminum vs. S20433 Stainless Steel

EN AC-21000 aluminum belongs to the aluminum alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21000 aluminum and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 6.7
46
Fatigue Strength, MPa 100
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 340
630
Tensile Strength: Yield (Proof), MPa 240
270

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 670
1400
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
230
Resilience: Unit (Modulus of Resilience), kJ/m3 390
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 32
23
Strength to Weight: Bending, points 36
21
Thermal Diffusivity, mm2/s 49
4.0
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 4.2 to 5.0
1.5 to 3.5
Iron (Fe), % 0 to 0.35
64.1 to 72.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
5.5 to 7.5
Nickel (Ni), % 0 to 0.050
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0