MakeItFrom.com
Menu (ESC)

EN AC-21000 Aluminum vs. S32760 Stainless Steel

EN AC-21000 aluminum belongs to the aluminum alloys classification, while S32760 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21000 aluminum and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
250
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 6.7
28
Fatigue Strength, MPa 100
450
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 340
850
Tensile Strength: Yield (Proof), MPa 240
620

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 670
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
4.1
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
220
Resilience: Unit (Modulus of Resilience), kJ/m3 390
930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 32
30
Strength to Weight: Bending, points 36
25
Thermal Diffusivity, mm2/s 49
4.0
Thermal Shock Resistance, points 15
23

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 4.2 to 5.0
0.5 to 1.0
Iron (Fe), % 0 to 0.35
57.6 to 65.8
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.050
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Tungsten (W), % 0
0.5 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0