MakeItFrom.com
Menu (ESC)

EN AC-21000 Aluminum vs. S32808 Stainless Steel

EN AC-21000 aluminum belongs to the aluminum alloys classification, while S32808 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21000 aluminum and the bottom bar is S32808 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
270
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 6.7
17
Fatigue Strength, MPa 100
350
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 340
780
Tensile Strength: Yield (Proof), MPa 240
570

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 670
1470
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
4.0
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
120
Resilience: Unit (Modulus of Resilience), kJ/m3 390
790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 32
27
Strength to Weight: Bending, points 36
24
Thermal Diffusivity, mm2/s 49
3.8
Thermal Shock Resistance, points 15
21

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
27 to 27.9
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
58.1 to 62.8
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0 to 1.1
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0 to 0.050
7.0 to 8.2
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Tungsten (W), % 0
2.1 to 2.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0