MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. 2030 Aluminum

Both EN AC-21100 aluminum and 2030 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 6.2 to 7.3
5.6 to 8.0
Fatigue Strength, MPa 79 to 87
91 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 340 to 350
370 to 420
Tensile Strength: Yield (Proof), MPa 210 to 240
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 670
640
Melting Onset (Solidus), °C 550
510
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
34
Electrical Conductivity: Equal Weight (Specific), % IACS 100
99

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
3.1
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
390 to 530
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
45
Strength to Weight: Axial, points 31 to 33
33 to 38
Strength to Weight: Bending, points 36 to 37
37 to 40
Thermal Diffusivity, mm2/s 48
50
Thermal Shock Resistance, points 15
16 to 19

Alloy Composition

Aluminum (Al), % 93.4 to 95.7
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 4.2 to 5.2
3.3 to 4.5
Iron (Fe), % 0 to 0.19
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0
0.5 to 1.3
Manganese (Mn), % 0 to 0.55
0.2 to 1.0
Silicon (Si), % 0 to 0.18
0 to 0.8
Titanium (Ti), % 0.15 to 0.3
0 to 0.2
Zinc (Zn), % 0 to 0.070
0 to 0.5
Residuals, % 0
0 to 0.3