MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. 6101 Aluminum

Both EN AC-21100 aluminum and 6101 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is 6101 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 6.2 to 7.3
10 to 25
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 670
650
Melting Onset (Solidus), °C 550
620
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
220 to 230
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
57 to 60
Electrical Conductivity: Equal Weight (Specific), % IACS 100
190 to 200

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1190

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Thermal Diffusivity, mm2/s 48
89 to 93

Alloy Composition

Aluminum (Al), % 93.4 to 95.7
97.6 to 99.4
Boron (B), % 0
0 to 0.060
Chromium (Cr), % 0
0 to 0.030
Copper (Cu), % 4.2 to 5.2
0 to 0.1
Iron (Fe), % 0 to 0.19
0 to 0.5
Magnesium (Mg), % 0
0.35 to 0.8
Manganese (Mn), % 0 to 0.55
0 to 0.030
Silicon (Si), % 0 to 0.18
0.3 to 0.7
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0 to 0.1
Residuals, % 0
0 to 0.1

Comparable Variants