MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. ASTM A182 Grade F6b

EN AC-21100 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
260
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 6.2 to 7.3
18
Fatigue Strength, MPa 79 to 87
440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 340 to 350
850
Tensile Strength: Yield (Proof), MPa 210 to 240
710

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 670
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.0
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.2
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
140
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
1280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 31 to 33
30
Strength to Weight: Bending, points 36 to 37
26
Thermal Diffusivity, mm2/s 48
6.7
Thermal Shock Resistance, points 15
31

Alloy Composition

Aluminum (Al), % 93.4 to 95.7
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 4.2 to 5.2
0 to 0.5
Iron (Fe), % 0 to 0.19
81.2 to 87.1
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.18
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0