MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. EN 1.0213 Steel

EN AC-21100 aluminum belongs to the aluminum alloys classification, while EN 1.0213 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is EN 1.0213 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
92 to 120
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 6.2 to 7.3
12 to 25
Fatigue Strength, MPa 79 to 87
160 to 240
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 340 to 350
320 to 430
Tensile Strength: Yield (Proof), MPa 210 to 240
220 to 330

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 670
1470
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
53
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
33 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
120 to 300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 31 to 33
11 to 15
Strength to Weight: Bending, points 36 to 37
13 to 16
Thermal Diffusivity, mm2/s 48
14
Thermal Shock Resistance, points 15
10 to 14

Alloy Composition

Aluminum (Al), % 93.4 to 95.7
0.020 to 0.060
Carbon (C), % 0
0.060 to 0.1
Copper (Cu), % 4.2 to 5.2
0
Iron (Fe), % 0 to 0.19
99.245 to 99.67
Manganese (Mn), % 0 to 0.55
0.25 to 0.45
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.18
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0