MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. EN 1.8151 Steel

EN AC-21100 aluminum belongs to the aluminum alloys classification, while EN 1.8151 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is EN 1.8151 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
200 to 540
Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 340 to 350
670 to 1940

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 670
1440
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
50
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.2
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1150
49

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 31 to 33
24 to 70
Strength to Weight: Bending, points 36 to 37
22 to 45
Thermal Diffusivity, mm2/s 48
14
Thermal Shock Resistance, points 15
20 to 58

Alloy Composition

Aluminum (Al), % 93.4 to 95.7
0
Carbon (C), % 0
0.4 to 0.5
Chromium (Cr), % 0
0.4 to 0.8
Copper (Cu), % 4.2 to 5.2
0
Iron (Fe), % 0 to 0.19
95.9 to 97.2
Manganese (Mn), % 0 to 0.55
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.18
1.3 to 1.7
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0