MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. C96200 Copper-nickel

EN AC-21100 aluminum belongs to the aluminum alloys classification, while C96200 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 6.2 to 7.3
23
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
46
Tensile Strength: Ultimate (UTS), MPa 340 to 350
350
Tensile Strength: Yield (Proof), MPa 210 to 240
190

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 670
1150
Melting Onset (Solidus), °C 550
1100
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
11
Electrical Conductivity: Equal Weight (Specific), % IACS 100
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
3.8
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
68
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
150
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 31 to 33
11
Strength to Weight: Bending, points 36 to 37
13
Thermal Diffusivity, mm2/s 48
13
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 93.4 to 95.7
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 4.2 to 5.2
83.6 to 90
Iron (Fe), % 0 to 0.19
1.0 to 1.8
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.55
0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.18
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0
0 to 0.5