MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. N06200 Nickel

EN AC-21100 aluminum belongs to the aluminum alloys classification, while N06200 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 6.2 to 7.3
51
Fatigue Strength, MPa 79 to 87
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 340 to 350
780
Tensile Strength: Yield (Proof), MPa 210 to 240
320

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 670
1500
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 880
430
Thermal Conductivity, W/m-K 130
9.1
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
65
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.0
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
320
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 31 to 33
25
Strength to Weight: Bending, points 36 to 37
22
Thermal Diffusivity, mm2/s 48
2.4
Thermal Shock Resistance, points 15
21

Alloy Composition

Aluminum (Al), % 93.4 to 95.7
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 4.2 to 5.2
1.3 to 1.9
Iron (Fe), % 0 to 0.19
0 to 3.0
Manganese (Mn), % 0 to 0.55
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 61.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.18
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0