MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. S33550 Stainless Steel

EN AC-21100 aluminum belongs to the aluminum alloys classification, while S33550 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is S33550 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 6.2 to 7.3
40
Fatigue Strength, MPa 79 to 87
270
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 340 to 350
680
Tensile Strength: Yield (Proof), MPa 210 to 240
310

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 670
1400
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
4.3
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
220
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 31 to 33
24
Strength to Weight: Bending, points 36 to 37
22
Thermal Diffusivity, mm2/s 48
3.9
Thermal Shock Resistance, points 15
15

Alloy Composition

Aluminum (Al), % 93.4 to 95.7
0
Carbon (C), % 0
0.040 to 0.1
Cerium (Ce), % 0
0.025 to 0.070
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 4.2 to 5.2
0
Iron (Fe), % 0 to 0.19
48.8 to 58.2
Lanthanum (La), % 0
0.025 to 0.070
Manganese (Mn), % 0 to 0.55
0 to 1.5
Nickel (Ni), % 0
16.5 to 20
Niobium (Nb), % 0
0.050 to 0.15
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.18
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0