MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. S35000 Stainless Steel

EN AC-21100 aluminum belongs to the aluminum alloys classification, while S35000 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is S35000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 6.2 to 7.3
2.3 to 14
Fatigue Strength, MPa 79 to 87
380 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 340 to 350
1300 to 1570
Tensile Strength: Yield (Proof), MPa 210 to 240
660 to 1160

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 670
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
14
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.2
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
28 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
1070 to 3360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 31 to 33
46 to 56
Strength to Weight: Bending, points 36 to 37
34 to 38
Thermal Diffusivity, mm2/s 48
4.4
Thermal Shock Resistance, points 15
42 to 51

Alloy Composition

Aluminum (Al), % 93.4 to 95.7
0
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
16 to 17
Copper (Cu), % 4.2 to 5.2
0
Iron (Fe), % 0 to 0.19
72.7 to 76.9
Manganese (Mn), % 0 to 0.55
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.18
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0

Comparable Variants