MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. 328.0 Aluminum

Both EN AC-21200 aluminum and 328.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is 328.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
60 to 82
Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 3.9 to 6.2
1.6 to 2.1
Fatigue Strength, MPa 110 to 130
55 to 80
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 410 to 440
200 to 270
Tensile Strength: Yield (Proof), MPa 270 to 360
120 to 170

Thermal Properties

Latent Heat of Fusion, J/g 390
510
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 660
620
Melting Onset (Solidus), °C 550
560
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
30
Electrical Conductivity: Equal Weight (Specific), % IACS 100
99

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
2.8 to 5.0
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
92 to 200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 38 to 40
21 to 28
Strength to Weight: Bending, points 41 to 43
28 to 34
Thermal Diffusivity, mm2/s 49
50
Thermal Shock Resistance, points 18 to 19
9.2 to 12

Alloy Composition

Aluminum (Al), % 93.3 to 95.7
84.5 to 91.1
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 4.0 to 5.0
1.0 to 2.0
Iron (Fe), % 0 to 0.2
0 to 1.0
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
0.2 to 0.6
Manganese (Mn), % 0.2 to 0.5
0.2 to 0.6
Nickel (Ni), % 0 to 0.050
0 to 0.25
Silicon (Si), % 0 to 0.1
7.5 to 8.5
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 1.5
Residuals, % 0
0 to 0.5