MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. 5082 Aluminum

Both EN AC-21200 aluminum and 5082 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 3.9 to 6.2
1.1
Fatigue Strength, MPa 110 to 130
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 410 to 440
380 to 400
Tensile Strength: Yield (Proof), MPa 270 to 360
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 550
560
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
32
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
670 to 870
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 38 to 40
39 to 41
Strength to Weight: Bending, points 41 to 43
43 to 45
Thermal Diffusivity, mm2/s 49
54
Thermal Shock Resistance, points 18 to 19
17 to 18

Alloy Composition

Aluminum (Al), % 93.3 to 95.7
93.5 to 96
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 4.0 to 5.0
0 to 0.15
Iron (Fe), % 0 to 0.2
0 to 0.35
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
4.0 to 5.0
Manganese (Mn), % 0.2 to 0.5
0 to 0.15
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 0.2
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15